Electronic properties of epitaxial cerium oxide films during controlled reduction and oxidation studied by resonant inelastic X-ray scattering.
نویسندگان
چکیده
We investigated the evolution of the electronic structure of cerium oxide ultrathin epitaxial films during reduction and oxidation processes using resonant inelastic X-ray scattering at the Ce L3 absorption edge, a technique sensitive to the electronic configurations at the 4f levels and in the 5d band thanks to its high energy resolution. We used thermal treatments in high vacuum and in oxygen partial pressure to induce a controlled and reversible degree of reduction in cerium oxide ultrathin epitaxial films of different thicknesses. Two dominant spectral components contribute to the measured spectra at the different degrees of oxidation/reduction. In ultrathin films a modification of the electronic properties associated with platinum substrate proximity and with dimensionality is identified. The different electronic properties induce a higher reducibility in ultrathin films, ascribed to a decrease of the surface oxygen vacancy formation energy.
منابع مشابه
Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates
Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...
متن کاملA medium energy ion scattering and x - ray photoelectron spectroscopy study of physical vapor deposited thin cerium oxide films on Si „ 100 ...
40 Å thick cerium oxide films have been grown on Si 100 substrates via physical vapor deposition of cerium metal in an oxygen background. The films have been characterized for their composition and thermal properties upon deposition and under different annealing conditions via x-ray photoelectron spectroscopy and medium energy ion scattering MEIS and their morphology using atomic force microsco...
متن کاملObservation of momentum-resolved charge fluctuations proximate to the charge-order phase using resonant inelastic x-ray scattering
In strongly correlated electron systems, enhanced fluctuations in the proximity of the ordered states of electronic degrees of freedom often induce anomalous electronic properties such as unconventional superconductivity. While spin fluctuations in the energy-momentum space have been studied widely using inelastic neutron scattering, other degrees of freedom, i.e., charge and orbital, have hard...
متن کاملTuning magnetic coupling in Sr2IrO4 thin films with epitaxial strain.
We report x-ray resonant magnetic scattering and resonant inelastic x-ray scattering studies of epitaxially strained Sr2IrO4 thin films. The films were grown on SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates, under slight tensile and compressive strains, respectively. Although the films develop a magnetic structure reminiscent of bulk Sr2IrO4, the magnetic correlations are extremely anisotropi...
متن کاملDepth-dependent magnetism in epitaxial MnSb thin films: effects of surface passivation and cleaning.
Depth-dependent magnetism in MnSb(0001) epitaxial films has been studied by combining experimental methods with different surface specificities: polarized neutron reflectivity, x-ray magnetic circular dichroism (XMCD), x-ray resonant magnetic scattering and spin-polarized low energy electron microscopy (SPLEEM). A native oxide ∼4.5 nm thick covers air-exposed samples which increases the film's...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 30 شماره
صفحات -
تاریخ انتشار 2016